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CARLEMAN-TYPE ESTIMATES AND
THE NEUMANN PROBLEM

SHERMAN HSING-CHUNG HSIAO

Introduction

In the theory of overdetermined systems of partial differential equations the
essential tool is the construction of the Spencer sequence. Namely, with a
given operator D: E — F we can associate the sequence
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where @ is the solution sheaf, D' are first order differential operators, and C*
are sheaves of certain vector bundles [5]. This sequence reflects many of the
properties of the differential operator considered. For example, an operator is
elliptic if the symbol sequence
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is exact for all real nonzero covectors £.
B. MacKichan studied in his Stanford thesis [4] a metric condition called
the d-estimate. This condition is shown to imply

2
0.3) — X W AFou, AFouy, < ¢
7%

|
i; Bjaju

2
>
14

the meaning of which will be explained in the sequel. Thus we see that the
o-estimate can be used conveniently to control a certain second order term for
facilitating our computation.

In this paper we will assume that the operator D: E — F considered is
elliptic and satisfies the d-estimate. MacKichan proved that the Neumann pro-
blem is solvable in the Euclidean case with constant coefficients, and indicated
without proof that it is solvable in the non-Euclidean case with variable
coefficients.

Later Sweeney [6] showed that in the Euclidean case with variable coeffici-
ents the Neumann problem is solvable on a sufficiently small disc, and the
harmonic spaces vanish in positive degrees.

Communicated by D. C. Spencer, January 24, 1973.
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We shall extend this result of Sweeney in several directions. In Part I, we
generalize to the Spencer sequence some of the Carleman-type estimates given
by Hormander [1] for the g-operator. §§1 and 2 are concerned with the
Euclidean case. In § 3 we examine the constant coefficient case and derive an
inequality :

2 2
©0.4) = (ST aru, Au) < clID*ul; + | Euli)
67 NOX0%; ® '

which holds true in a convex open set £ C R*. This main inequality (0.4) is
applied to get existence and approximation theorems. In particular, if an
element u is the coboundary of an element v, we show how v, properly chosen,
can be bounded in terms of u. In § 4 we consider the non-Euclidean case. In
§8 2 and 4, the domain has to be shrunk in order to get rid of the error terms.

In Part II, we establish the estimates for the Neumann problem on a com-
pact manifold with smooth boundary. First we summarize the D-Neumann
problem in § 1, and point out that it is sufficient to have the Kohn-Nirenberg
estimate. Then in § 2 we use the result of Part I to obtain this estimate in the
whole domain by a partition of unity argument. We also examine the “local
convexity” condition required on £, and try to express it by an invariant form.
In § 3 we try to investigate a question raised in § 2 concerning the Levi form.
However we are unable to determine an intrinsically defined Levi form in the
general case, which, if positive definite, would ensure the validity of our
estimates, and indeed no such form seems to exist. We give an example in
which the required convexity on a bounded domain is stronger than that
expressed by the Levi form. In place of the Levi form we use a form which
is defined in terms of the given operator by means of a metric. If this form is
positive definite, the desired estimate for the Neumann problem is shown to
be valid. The problem of the existence of an intrinsically defined Levi form
remains open (even though its positive-definiteness will not always be sufficient
for the solvability of the Neumann problem).

PART I

1. Euclidean case with constant coeflicients

Let £ be an open set in R*® with compact closure and smooth boundary,
that is, there is a smooth function #{(x) which defines the boundary 6Q of 2,
such that »(x) < 0 inside £, r(x) = 0 on 32, r(x) > 0 outside 2 and such
that [dr] = 1 on the boundary.

We are considering the Spencer sequence (0.1) which is elliptic and satisfies
the g-estimate. For convenience we shall write D! as D, D' as E, and write
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the formal adjoint (D'~!)* as D*. First we assume that D and E are of the
following forms:

(1.1) D=2Ajba_+Ao=ZAjaj+Ao, E =73 B + B,
7 ] 7 7

J

where 4;, 4, and B;, B, are constant matrices. Moreover, we consider a real
valued smooth function ¢ on £2. Applying Green’s formula to elements u in
C'%, v in C*, and defining

1.2) 9¢Du, v, = J (Du,v>e=*dV ,  where xe 2,

we may conclude that:

(1.3) D* = — 31 A%, + AF with §;v = ov/ox; — v(3p/dx;) ,
7

and an element v belonging to the domain of D* must satisfy

(1.4) 2 @nNAfv =0 on 02 .
7

Following a theorem in [4, pp. 115-116] and observing that in our case we
have to consider

2
(1.5) 0,8 — 8 )u = 22y

0x,0%x;

when we interchange 9; and d,, we obtain the following inequality (1.6) which
is a Carleman-type estimate.

Theorem 1. Let 2 be an open set in R* with compact closure and smooth
boundary, and let D and E be defined by (1.1). Then we can find a constant ¢
independent of u and ¢ such that

Q2 2 a0 Az
> (A% Atu gy + % (S Aru, agu)
7 @ <, 7

(1.6) 0x;0x; 0x,0x;

@

< cl?D*uly + 2 Eull; + “fulll .

If £ is a ball of radius R, we may take r(x) = (3, x;)* — R, so that we
have on 922 :

38, = —%(air)ajr it oiej, @)= %(1 — @) .

Thus



332 SHERMAN HSING-CHUNG HSIAO

> (00, AFu, ATuy,

7vJ

(1.7) = % LA, Afup, — % 3 @ Atu, @Az,
A
R

20 Afuly = ¢ Pl 2 0,

which comes from the symbol surjectivity of the Spencer sequence [6, p. 357].
Substituting (1.7) into (1.6) we obtain

2 2
1.8 2 P4z, A;!‘u> + & 2ull; <Ll D*ull; + 2l Eufly + ] -
%7 axiaxj' @

Taking further ¢ = 0, we get the Kohn-Nirenberg inequality
(1.9) Poulf < cl?| D*ulf + N Eulf + %julf] -

In the next section we shall show that the term ?|u|]2 appearing in (1.8) is
in some sense not essential.

2. Euclidean case with variable coefficients

We shall consider now (1.1) with variable matrices A4 ;, 4,, B;, B, depending
on x € £ as coefficients. For convenience we shall consider in this section the
unit ball, and denote it by £. Instead of D and E, we shall consider new
operators D, and E, which are defined as follows:

2.1) D, = 2 Ai(ex)0; + edyfex) , E, = Z B;(ex)0; + eBylex) .

Then

2.2) Df = — ¥ A503; — o T (0) — AFED) .

X

Following a parallel treatment as in [6] (and the details of which will be
carried out in § 4), we have

A¥u, A¥u)
0x,0x; 7,

< C["HDZ‘HH; + ClEuf) + ec *ul +e* <Py, wp,

< 3‘/’ A*u A*u\ +Zao<
Q3 ™

where P, is a first order differential operator given by
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P, = ( 2ZAA"8—2Z A;kaj)
07 6x;
@9 oA 0A; 0A*
+s< 254 — AgAF — zi’____)
Xj ) axj' axi

We can control P, by two lemmas in [6], and obtain
2.5) |%<Pu, up, | < cl®| DFulf; + % Eul; + MM + 1) “[uly + *2|ulil,
where we suppose that M is a fixed number such that

(2.6) sup |3p/6x;] < M .
J

Choosing ¢ to satisfy (2.6) and to be strongly convex, namely,

¢ 850 * * 21i 2
2.7 5 A¥u, A% u> >cYulf,
DY 0X40X;

we obtain the following theorem by shrinking the ball.
Theorem 2. On a sufficiently small ball 2, if we choose ¢ to satisfy (2.6)
and (2.7), then we have the Carleman-type estimate .

< F*p A¥u, A"‘u og<
0x;0X;

Afu, A"‘u>
9x,;0x;

< c[?|D*ull; + °| Eul],
where c is a constant depending on M and of the form
(2.8) ¢ = constant[[1 — MM + 1)].

Recalling the remark following (1.9) in § 1, if we are only interested in a
small 2, then the term ?||u|} can be absorbed. This is true for the Euclidean
case. But we shall show in § 4 that this is no longer true in the non-Euclidean
case. When £ is an open subset with boundary in a manifold, there will be
some term ?{|u{] which cannot be absorbed, even when we consider a very
small 2. However, when the constant ¢ is independent of u and ¢, as is in the
constant coefficient case, there is another method to take away the term || u|f}
in (1.9). This we shall show in the next section.

3. Applications of the Carleman-type estimate

In this section we shall transcribe the method of Hormander [1] to obtain
corresponding results for elliptic operators satisfying the §-estimate.
We shall consider (1.6) on a convex domain £, that is, such that
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o
axia.Xj

3.1) I Ai*u,A;i‘u> >0.

4,7 ¢
Therefore this term can be dropped. Since c is a constant independent of u, ¢,
if we replace ¢ by ¢ for some large positive number -z, we get a similar in-
equality with the same ¢. Now we are considering a strongly convex ¢. The
inequality (2.7) is still true if we replace ¢ by z¢. Thus we obtain, by renaming
the constants,
(3.2) o?l|ulf, < el D*ulf, + °lEulf, + ?fulz] -
If we choose r > 2¢, we obtain formula (0.4) by replacing ¢ by ¢. Next we
shall transform (8% /dx;9x;) into its simplest form. Let 1, = e* be the smallest
eigenvalue, and consider the operator T = e#]. Then we have

= (T2 aru azu) = 7 arAzu, A,
o7 N Ox,0x; # i

> 3 Afetu, ATt uy, > ¢ || Tulf, .

Combining (0.4) and (3.3) we get
(3.4 [Tulf < clil B*ull* + || Eulf] .

This operator T is closed, densely defined and linear in C'. Moreover, T* =
T. Thus, if g = T*h, then h = T-'g = e¢~**g, and we can apply a classical
theorem in the Hilbert space theory [1] to obtain

Theorem 3. Let 2 be an open set in R™ with a smooth boundary satisfying
(3.1), ¢ be a suitable smooth strongly convex functon in £2, and e* be the
lowest eigenvalue of the matrix (3¢ [0x;0x;). For every ue CH(2, @) satisfying
the boundary condition (1.4) and Eu = D'u = 0, and

f {u,uye=®+Rdy < oo,
pe)
then we can find a v € C'"1 (2, ¢) such that Dv = D*"'v = u and
(3.5) f (v, vyesdV < cf Cu, ue=+0qy
2 0o

where CH(Q, o) means the elements in C'({2) whose ¢-norm is finite.

Later we shall use the notation C*(£2, loc) to represent those elements in C*
which are integrable on every compact subset of £2. Of course, if u ¢ C'(2, o),
then u € CH(2, loc).

The assumption concerning the boundary smoothness in the above theorem
can be removed by using the strong inequality (3.5), and we can express
Theorem 3 in a more applicable version:
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Theorem 3'. If 2 is a convex open set in R*, and u ¢ CH(2, loc) satisfies the
boundary condition and the integrability condition Eu = 0, then there exists
v e C'N(82, loc) such that Dv = u and

J {v,vre~rdV < CJ {u, uye=rdV .
o) o)

We shall make an application of Theorem 3’ to obtain a theorem concerning
the vanishing of the cohomology, and moreover to establish an estimate be-
tween the cocycle and the cochain of which it is the coboundary. Given a
convex {2 in R* with compact closure and smooth boundary, we cover £ with
a finite system of convex covering {2;}, namely, each 2; is convex. Consider
a suitable partition of unity {y;} subject to this covering. If s is an integer > O,
we denote by W*(Z,({£2,}, ¢)) the set of all alternating cochains ¢ = {c,} where

a = (ay, ---,a;) is an (s + 1)-tuple of positive integers, c, ¢ C{(2,), 2, =
RN - N82,,Dc, =0 and
(3.6) el = zj (e cdesdV < oo .

As usual we define the coboundary operator § from W* to W**! by

(39) (5c)ao---as+1 = S—ZI (_l)kcaw“ﬁk"'ﬂs+1 *
k=0

Theorem 4. Assume that the partition of unity {y;} subordinate to {2} is
such that |3 ; [D', y;1] < constant. Let ¢ be a strongly convex function. For
every c e W(Z,({2;}, ¢)) with c = 0,5 > 1, one can then find a cochain
¢ e W Z,({2;}, ¢)) such that 5¢’ = c and ||c ||, < K ||c|,, where the constant
K does not depend on c.

Sketch of proof. If wesetb, = ¥ ;y;c;,.1or|a| = s, it is easy to show that
db = c. Although D'b is not necessary equal to 0, we have ¢D'b = 0. Con-
sideration of the case s = 1 and then induction enable us to find a suitable
error term of b, so that after correction we get §b” = ¢ and &’ ¢ W*~! and the
inequality indicated is satisfied.

A quite complicated argument such as that in [1] can yield the following
important approximation theorem. We denote by K¢ the complement of K. A
compact subset K of £ is said to be convex with respect to £ if for every
x € 2 NKC there is a convex function + in 2 such that y(x) > 0 but + < 0
in K. For such K we have

Theorem 5. Let 2 be an open convex set in R*, and K be a compact sub-
set of Q2 which is convex with respect to 2. Let ue C*"Y(K,0), and let Du =
0 on K in the strong sense that

K (u, Dfw = j Cu, DiwdAV = 0
K
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for every w e CY{R2,0) such that w = 0 outside K and Dfw e C*"%(2,0). Then
one can approximate u arbitrarily closely in C*-Y(K,0) by elements v ¢
C-1(2, loc) such that Du’ = 0.

4. Carleman-type estimate for the non-Euclidean case

Let M be a real Riemannian manifold with metric (g;;). Then the term C* in
the Spencer sequence is a fibre bundle on M, and we let (%;;) be a metric along
the bundle. Consider an open submanifold 2 in M with smooth boundary. At
each point x in £, we have a coodinate neighborhood U with local coodinate
(x', ---,x"). Let u, v be bundle-valued differential forms in QN U, and ¢ a
smooth function in £. If g is the fibre dimension of C!, the form of u can be
written; as u = (&, - - -, u%), where

ageeeay

w= > u_ . . @dxe...dx,
ai, e, al
and we may define
Ty, vy, = 2, Jarv hygme ... g”ﬂluix---az”él-..ﬂﬂ/g e-vdx .

The Green’s formula is easily seen to be

90T/ Ju ony seny/ 07 onty
@D (e vy = = gy, + () + 20, 00),
L4 xk ¢

Xk

where 3§ is defined in (1.3), and

+ G el 4
0x;, axy, + 0X;; 2 ox;

- -1 -
4.2) ak=(aH1H 9G aG‘G_i_@gg)

with H = (4;;) and G = (g;;). We see that ¢, thus defined is independent of
u, v, and depends only on the metrics along the fibre and on M. For our con-
venience, we may consider an £ which lies in a coordinate neighborhood, and
then we may just use £, 002 instead of 2NU and 92N U.

The general first order differential operator in the Spencer sequence has the
local form (1.1) with variable coefficients in £2. Using (4.1) we find

ML)

X

7

@.3) D¥=AF + T <ajA;!< -

with boundary condition (1.4). From (4.3) and (1.5) a computation gives
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2\ D*ul} = {DD*u,uy, = —Z; 2(A6:0,A%u, uy,

2 82
4.4 ®  Aru, Afu
@9 +§ 0x,0%; o J>

+ Z D<Aiaio‘jA"7Fu7 u>p + 9<Pu7 u>p ’
2%

14

where
P=— ZJ} AA¥5; + ZJ} Aw; AT + g} A0;AF + AAF — ZJ} APA¥ [ox; .
We shall do the integration by parts for the first term on the right hand side
of (4.4), and then re-express its boundary term:
- 723 (A 6,0:ATu, uy,
) = — ZZJ: 28;4,AF0.u, uy, + *(Pu,uy,
=2 ’;<AiA *3:u, 8,1, — z] g, A;A¥3u, up, + *(Pu,up,

(4.5) o
— 2 7%o@;nAtw), Afuy, + 3, @0, A u, Afuy,
%, %7

R *
+ 5 {8,004 u,A;“u> ,
o7 ox; P
where
E3
(4.6) P=xnig a5 _ 505,424
i 0x; i3 0x;

Now (1.4) implies that near the boundary },; (3;1)4%u = r(x)K(x) ; thus
— ZZ} 200,((0,nA%w), Afup, = — ZZ} @K, Afu,
@D ’ 50K, Afup, = 0.
On the other hand P and P’ are first order differential operators containing §;
which involves ¢. We may get rid of these §; by replacing them by 4; through

integration by parts. Altogether we have

2
Dl = 3 2 A¥ou, ATod, + T ”<___6LA;“u,A;Fu>”

i,J 0x;,0%;
4.8) Ly 22/ oy A;*u,A;‘u> Ly 9<_-.ag_jA;!‘u,A;“u>
T, 0x,0% ; PR A b & o

. 9<P”u, u>¢ ,
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where
P’ = <ZA A*a T Z 2 .7 A;}-n])
(4.9) 9A¥ ) 04, 8A}
—<2ZA,-> Uy A+ x4 )
7 0xX; w5 0X;  Ox

Now (0.3) istrue from our assumption that our operator satisfies the §-estimate.
If we write |90 /0x| = sup|ds,/dx;|, and observe the obvious inequality
i

(4.10) |z o] <drEul + 2,

then we have, by combining (4.8), (0.3) and (4.10),

2 a0 2
2 < PO g4y, 4% u> + Y ar AZ“u,A;!‘u>
67 N Ox;0X; ¥ 0x;0%;

“us]

where ¢,, ¢, are some constants independent of ¢ and u.
Note that if we replace D, E by D, and E, as defined by (2.1), we obtain
similarly

I

(4.11) < cl[‘?uD*unz + Y Eult + !%

+ e, ”Huifi + l9<Pﬂuv u>¢l] s

2 aZ . . an a2r
¥ 2 AFeou, Afeou) + T A?(sx)u,A;F(ex)u>
2 axiaxj' .7 axi .x]'

7 | » 2]
— | °lu
x “ ”tp

< cl[f’uD:*uni + 2 Eul + ] ;

@

(4.11),

+ ele; ull; + [7<Pu, 1,11,

which differs from (2.3) only by an extra term [go/ox|“°||«|j;, and P! is the
same as expressed in formula (2.4).

The two lemmas in [6] used in § 2 in obtaining (2.5) are as follows. For
each x, in 2 or in its boundary 92, we can always find a neighborhood U of
x, satisfiying the following lemmas.

Lemma 1. There exists a constant ¢ such that for all 0 < ¢ < 1,

[2CP u, up| < c[®|DFulf + ?|Eulf + “|ufi]
where

Yulf = @0 [ (4 + (P31 ds
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is the Sobolev norm.
Lemma 2. There exists a constant ¢ such that for all ¢ > 0 small enough
we have

ully < cl®DFulf + *HEu + “lullf + °%|ulfY .

Now P can be written as P, = Y, K;8; + ¢K,; therefore, if we put v =
e~**y, we have
2 Pu, uy, = Y, e ¥K;0u, e~ udy + ¢ (e ¥Ku, e7tu)

J

l 2
= *(PIv,0) + = T (
J

anZ K jv,v> .

Applying the above two lemmas and assuming (2.6) we obtain

(4.12)  |%P/u, uy,| < c[?|D¥o[F + “IEp|P + M 2vlf + *2v | .
However it can easily be verified that there exist some constants c¢,, ¢, such that

NE2|F < el Ealf + M “uli],
WDFoI! < ol®| DFufly + B #ul] -

(4.13)

Combining (4.12), (4.13) we obtain immediately (2.5). The question now is
how to shrink 2 in order to absorb the term e[c ?||ul} + [?<P/u, u>,|].
We have already established the fact that in Fig. A

U
U 5 R
- s
/2
U
o2
Fig. A Fig. B

there is a neighborhood U of x, in which (2.5) is true for « with support in U
as indicated in the figure and satisfying the boundary condition. Now we shall
flatten out the boundary by a suitable diffeomorphism and get Fig. B. Thus
(2.5) (and of course (4.11)) is true in Fig. B. We may shrink the figure in
Fig. B, that is, choose ¢ > 0 sufficiently small so that we can absorb the
term elc ?|ulf} + |2{P/u,u>,]] and get

80 aZr

Q 2
z < d’p A;*‘u,A}‘u> + 3
Ty b4

3xi8xj 2% axiaxj
< clflDFull; + ?|Eull; + 190/0x] 2|l ulf] .

AFu, Ag(-u>

(4.14)
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If we make a coordinate transformation y = ex, then D¥ is transformed into
eD*, E, into ¢E and |9o/3x] yields a factor ¢ since g;, by (4.2), involves a first
order differentiation. Thus in a sufficiently small e-multiple of the domain in
Fig. B we have the estimate

2 3
(22 azu, A*u> T Aru, Afu)
0x;0%; 7 0x,0%; ¢

< cl®iD*uff; + *| Eull; + “llu|(]

(4.15) B

Thus by mapping diffeomorphically back to Fig. A we have proved

Theorem 6. Let x, be a boundary point of 2, and suppose that (1.7) and
(2.7) are true. Then we can find a sufficiently small neighborhood U in which
the estimate (4.15) holds for all u with support lying in U in the way described
in Fig. A, where the constant ¢ depends on ¢ and has the form (2.8).

PART II

5. The D-Neumann problem

In [7] one can find the full description of the D-Neumann problem. We
only point out here that if we can establish the Kohn-Nirenberg estimate (1.9),
then the D-Neumann problem is solvable. Sweeney gave an example of a tri-
angular operator for which the Kohn-Nirenberg estimate does not hold. How-
ever, if we assume that the operator satisfies the d-estimate, then we shall
prove that the Kohn-Nirenberg estimate is always true in a suitable convex
domain. This we shall do in the next section.

6. The Kohn-Nirenberg estimate

Suppose that £ with a smooth boundary 342 is a subset in R” or in a mani-
fold. We shall consider the constant coefficient case first. In (4.8) and (4.9)
we cancel all the terms involving the derivatives of the coefficients A;, A%, etc
We immediately get

(6.1 A¥u, A*u> < cl?ID*ulf + “|lEul? + °|ulf]

/
an 0%

by setting ¢ = 0, where c is a constant independent of u but depending on the
metrices. The left hand side is the Levi form and can be regarded as H(o(D)*u)
where H, the Hessian, is a bilinear form on 7* @ C!-!},, defined as follows:

H( T ®x, ¥ av® yj) = 3 5%@a %0 Vi) -



CARLEMAN-TYPE ESTIMATES 341

For convex domains, the Hessian is positive definite on 7*(62) ® C~! and
the boundary condition }_; (3,;/)A¥u = 0,,(D)*u = 0 on 922 guarantees that
g(D)*u is in T*(6Q) @ C'-!, since the normal component vanishes. By also
remembering that the symbol sequence of the Spencer sequence is surjective,
we have

H(o(D)*u) > ¢ *?|e(D)*ulf = ¢ *?jul’ .
Thus

an aZr . .
% (2 Aru, Ay = ¢ uf?
%) 0x;0x;

if 2 is Levi-convex, i.e., if the Levi form is positive definite. Consequently
we have proved that if £ is Levi convex, then the Kohn-Nirenberg estimate
(1.9) is true.

For the Euclidean case, this is all which we want. But for the manifold case,
we need the following partition of unity argument. Let us consider a compact
manifold £, and assume that £ is Levi-convex, that is, for every point of 32
there is a Levi convex neighborhood. We have already shown that on this
peighborhood the Kohn-Nirenberg estimate holds. Let us cover £ with a finite
number of the above mentioned Levi convex neighborhoods 2, for which the
Kohn-Nirenberg estimate holds. We choose a partition of unity {y} such that
Supp ¥ C £; and Supp ¥ N 32, = Supp ¥ N 32. Then

Plulf < ¢ Xyl < 0 2 CliveulP + D sl + 21 Eulf)
< ¢ 2 Clbull + #lraDulf + #flEul)
+ e 2 CIID% rdulf + FE, dridulf)
< c®lI D*ulf + °|Eu® + “|[ul?) .

As for the variable coefficient case, we see from Theorem 6 that we are able
to choose a finite covering {£,} such that in each £, Theorem 6 can be for-
mulated. Take a similar partition of unity {y~}, and assume that for all &

6.(.7k/ aZr
6.2
6.2 z ax.0x,

\ N
A?(umA?(uk) >,

where u;, = +,u satisfies the boundary condition in each £,. Thus the Kohn-
Nirenberg estimate holds for each £,, and we can apply the partition of unity
argument as in the constant coefficient case to prove that under the assumption
(6.2) the estimate is true in the whole region.

The above condition (6.2) is not very good, since it depends on the coordi-
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nate systems. Let us try to find an invariant condition to replace (6.2). From
(4.9) we see that (4.8) contains a term 2 J; ; ?<(64;/0x,)A¥d,u, uy,. Keep
this term on the same side of the term }; ; *%<(6,0,5)Afu, A¥u>, in the der-
ivation of formula (4.11), and then set ¢ = 0. The result is as follows:

6.3) T, @anAtu Afuy +2 3 <A°’o_7u __J- u>
< [2|D*ulf + 2| Eulf + °jul?] .

Now observe that by integration by parts

>+z AFu, 3,02

x.

3 (Ao 2y = - 37°
&7 i

0 A’!‘ 0A¥ 0A¥
— A¥fu, 1 u> — < L u, J u> .
zZ; 0x,0X; zZ; 0X; 0x;

Since the last two terms are of order ¢ ||| and can be transported to the
right hand side, the left hand side of (6.3) becomes

" 2 aA4¥
2 (A 00Afu,uy + 3, A;G:nN-2u, u>
o o ax,
Q E %
+ 5 (Ao, 2y — 3 (aru, 2 o)
67 o0x; ] ax;
= 2 A 0@NAPu, uy + 7 <8AJ A¥ — A, _&)aju’ u> ,
i,7 1,7 axi axi

so that (6.3) becomes

20 * 0A; 4« o0A*
op DD 5 ( Sldr—a ) s, 1)

< cl®| D¥ulf + #|Eul’ + %uif] .

We shall see more clearly that the Levi form, if it exists, must consist of the
boundary integral ?*(Dg,.(D)*u, uy and some boundary integrals, which we
shall call the unknown part of the Levi form, contributed from the second
term

6.5) 5 (afo* A aai )auu>.

i, 7 i

Fortunately by the combination of Lemma 1 (¢ = 1) and a stronger version of
Lemma 2 of §4, which states that if we consider D, E instead of D,, E,, then
Lemma 2 is still true [7], we see that (6.5) satisfies
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/(OAJ/+—A a”)au u>
(6.6) % \ ox; o,

< clPID*ul? + “Eulf + “lulf + *“lul],

so that the unknown part of the Levi form (if it exists) will be of the order
¢ ®@|ul]*. Thus, if we denote the Levi form by L, then

22{Dg s, (D)Y*u,uy — ¢ *?u|f < L < °?{Das.(D)*u,uy + ¢??||u|f .
The condition for L to be positive definite can be obtained by
(6.7) (D0, (D)*u, uy > K% ulf

for some sufficiently large positive constant K, and we obtain the Kohn-
Nirenberg estimate from (6.7) in any case, even if L does not exist.

The left hand side of (6.7) is an invariant form. Therefore it can be inter-
preted globally, and in a local coordinate neighborhood we have the relation

DQ<DO’¢7(D)*U; u> = Z a_xaor AFu, A% Ll>
7 10X
(6.8)
+Z AJLdr) . -u, u/\
J

Thus the condition (6.7) for sufficiently large K is enough to guarantce the
condition (6.2), and therefore we obtain

Theorem 7. The Kohn-Nirenberg estimate holds on 2 if it satisfies (6.7)
for u satisfying the boundary condition ¢,,(D)Y*u = 0 on 8%2.

The first term in the expression (6.8) is called the dominant part, while the
second term is called the secondary part. The reason is obvious when we con-
sider D,, the dominant part remains unchanged, while the secondary part can
be absorbed because of the appearance of a factor ¢. In other word, if we are
only interested in a small neighborhood 2;, of x,, then the secondary part can
be neglected, and locally the condition (6.7) turns out to be our desired con-
dition (6.2).

7. The Levi form and a remark concerning the j-estimate

The guess work for the Levi form in the previous section is justified if we
consider the special case where the operator is the ¢-operator. In the com-
putation for the G-operator (we omit the details) the Levi form is obtained by
omitting all terms, which can be absorbed into {?|| D*u|?® + ?||Eu|® + 2| u|?},
and then putting all the remaining boundary integrals together. We still do not
know whether the Levi form of a general operator D in the Spencer sequence
exists or not. In fact we shall give a simple example whlch raises some doubts
about the existence of the Levi form.
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Let us consider the following Dolbault complex on C”

d g 3 3
>0 —> A —— A! A* A 0.

I

7.1) O

By a bi-differentiable but nonanalytic transformation, (7.1) will be transformed
into

s 0 - 8 . 0§ . 3§ .
7.2) O 7 A° A? A i — 4" — 0.
Taking the direct sum of the two complexes we have

.. 0@0 - 60 ~ OE0 aEh ~
73 00068 20, B re0s’ . B e i 0.

The existence domains for solutions of (7.3) consist of domains in C* whose
convexity is defined by two Levi forms. For example, if we consider a unit
ball B, we have the usual Levi form to express the convexity of B. However,
we know that there exists a bi-differentiable mapping f such that f(B) C C*
is no longer convex with respect to the original coodinate system. Thus to
solve the Neumann problem we require two Levi forms, instead of a single
Levi form, to yield the convexity condition on the bounded domain considered.

Finally, let us remark that in our theory we use the d-estimate to control a
certain term (0.3). We shall now give an example showing that we can do the
same thing by a different kind of assumption. Let us consider the following

complex

EO b > E* b > Ei'k(k—l)

where E° is a line bundle. Let the operator D be defined by
(7.4) Du = (p'u, p*u, - - - , p*u) .
Then the adjoint operator D* is defined by
(7.5) Drv =3 ;.
Therefore

|D*v|f = {D*v, D*v) = (DD*v,v> = § P p*v;, v

= ZZ; pP*piv;, vy + ;__.; Ip% P * vy, v

Usually, the commutator [p?, p’*] is a second order operator. However, if we
make the assumption that the principal symbols commute with the symbols of

the adjoint operators, then the commutator [p?, p?*] becomes a first order
operator, and we have
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(7.6) || D*v|f = ZZJ {p*v;, pv;> + commutator term 4 boundary term.
But we have also
(7.7 [Dv|* = — ZZ]]_<Pivj,Pjvz-> + ZJ I pP;lf* -
Combining (7.6) and (7.7) we obtain

1DV + [D*v|? = commutator term + . || p*v;|* + boundary term ,
&y

and then we can follow our standard technique to derive our estimates. Note
that, by a theorem of Mackichan, the §-estimate implies that the principal
symbols commute with the symbols of the adjoint operator. However, it is not
known whether the converse is true or not.
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